Friday 20 January 2017

Gleitender Mittelbedarf

In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugeführt wird. Die Ergebnisse der Simulation werden auf die nächste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und um m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Demand Forecasting Techniques: Moving Average Exponential Smoothing Diese Lektion diskutiert die Bedarfsprognose mit Schwerpunkt auf den Verkauf von etablierten Waren und Dienstleistungen. Es wird die quantitative Techniken der gleitenden Durchschnitt und exponentielle Glättung einführen, um die Nachfrage zu bestimmen. Was ist Nachfrage Prognose Noch einmal, seine die Ferienzeit. Kinder sind bereit für einen Besuch von Santa, und Eltern sind über Shopping und Finanzen gestresst. Die Unternehmen schliessen ihre Operationen für das Kalenderjahr ab und bereiten sich darauf vor, in das zu kommen, was vor uns liegt. ABC Inc. stellt Telefonleitungen her. Ihre Buchhaltungs - und Betriebszeiträume laufen auf einem Kalenderjahr, so dass das Ende des Jahres ihnen erlaubt, Operationen vor der Ferienpause und Plan für den Anfang eines neuen Jahres aufzuwickeln. Seine Zeit für Manager, ihre Abteilungen operativen Pläne vorzubereiten und zu Senior Management, damit sie einen organisatorischen Operationen Plan für das neue Jahr erstellen können. Die Vertriebsabteilung wird aus ihrem Kopf gestresst. Die Nachfrage nach Telefondraht war im Jahr 2015 und die allgemeinen wirtschaftlichen Daten deutet auf einen anhaltenden Abschwung in Bauvorhaben, die Telefondraht erfordern. Bob, der Vertriebsleiter, weiß, dass die Geschäftsleitung, der Verwaltungsrat und die Stakeholder auf eine optimistische Umsatzprognose hoffen, doch er spürt, wie sich die Rezession der Industrie hinter ihm schleicht. Demand-Prognose ist die Methode der Projektion der Kundennachfrage nach einer guten oder einer Dienstleistung. Dieser Prozess ist eine kontinuierliche, wo Manager verwenden historische Daten zu berechnen, was sie erwarten, die Umsatznachfrage für eine gute oder Dienstleistung zu sein. Bob nutzt Informationen aus dem Unternehmen Vergangenheit und fügt es zu den wirtschaftlichen Daten aus dem Markt zu sehen, ob der Umsatz wächst oder sinkt. Bob nutzt die Ergebnisse der Nachfragevorhersage, um Ziele für die Verkaufsabteilung festzulegen, während sie versuchen, sich an die Unternehmensziele zu halten. Bob wird in der Lage sein, die Ergebnisse des Vertriebs im nächsten Jahr zu bewerten, um festzustellen, wie seine Prognose herauskam. Bob kann verschiedene Techniken verwenden, die sowohl qualitativ als auch quantitativ sind, um das Wachstum oder den Rückgang des Umsatzes zu bestimmen. Beispiele für qualitative Techniken sind: Geleitete Vermutungen Prediction-Markt Spieltheorie Delphi-Technik Beispiele für quantitative Techniken sind: Extrapolation Data Mining Kausale Modelle Box-Jenkins-Modelle Die oben aufgeführten Beispiele für Bedarfsprognosetechniken sind nur eine kurze Liste der Möglichkeiten, die Bob zu bieten hat Praktiken Bedarfsprognose. Diese Lektion konzentriert sich auf zwei zusätzliche quantitative Techniken, die einfach zu bedienen sind und eine objektive, genaue Prognose liefern. Moving Average Formula Ein gleitender Durchschnitt ist eine Technik, die den Gesamtverlauf eines Datensatzes berechnet. Im operativen Management ist der Datensatz das Umsatzvolumen aus historischen Daten des Unternehmens. Diese Technik ist sehr nützlich für die Prognose kurzfristiger Trends. Es ist einfach der Durchschnitt eines ausgewählten Satzes von Zeitperioden. Sein genannt bewegt, weil als eine neue Nachfrage Zahl für einen bevorstehenden Zeitraum berechnet wird, fällt die älteste Zahl in der Menge, halten die Zeitspanne gesperrt. Schauen wir uns ein Beispiel an, wie der Vertriebsleiter bei ABC Inc. die Nachfrage mit der gleitenden Durchschnittsformel prognostizieren wird. Die Formel wird wie folgt dargestellt: Moving Average (n1 n2 n3) n wobei n die Anzahl der Zeitperioden in dem Datensatz ist. Die Summe aus dem ersten Zeitabschnitt und allen zusätzlichen Zeitperioden wird durch die Anzahl der Zeitperioden dividiert. Bob beschließt, seine Bedarfsprognose auf Basis eines 5-jährigen gleitenden Durchschnitts zu erstellen. Das bedeutet, dass er die Daten aus den letzten 5 Jahren als Daten zur Berechnung verwendet. Exponentielle Glättung Exponentielle Glättung ist eine Technik, die eine Glättungskonstante als Prädiktor für die zukünftige Prognose verwendet. Wenn Sie eine Zahl in der Prognose verwenden, die ein Durchschnitt ist, wurde sie geglättet. Diese Technik nimmt historische Daten aus früheren Zeiträumen auf und wendet die Berechnung für die exponentielle Glättung an, um zukünftige Daten zu prognostizieren. In diesem Fall wird Bob auch exponentielle Glättung anwenden, um mit der früheren Berechnung eines gleitenden Durchschnitts vergleichen, um eine zweite Meinung zu erhalten. Die Formel für die Exponentialglättung ist wie folgt. F (t) Prognose für 2016 F (t-1) Prognose für das Vorjahr Alpha-Glättungskonstante A (t-1) Ist-Umsatz des Vorjahres Die Glättungskonstante ist ein Gewicht, das auf die Gleichung bezogen wird Orte auf die neuesten Daten. Die Glättungskonstante ist eine Zahl zwischen 0 und 1. Eine Glättungskonstante von 0,9 würde signalisieren, dass das Management viel Wert auf die meisten vorherigen Zeitabschnitte der historischen Verkaufsdaten legt. Eine Glättungskonstante von 0,1 würde signalisieren, dass das Management sehr wenig Wert auf die vorherige Zeitspanne legt. Die Wahl einer Glättungskonstante wird getroffen oder verfehlt und kann modifiziert werden, wenn mehr Daten verfügbar sind. Wir werden das Diagramm von oben mit dem historischen Verkaufsvolumen verwenden, um die exponentielle Glättungsprognose für 2016 zu berechnen. Es gibt eine zusätzliche Spalte, um die prognostizierten Verkaufsmengen zu berücksichtigen. Diese Berechnung ist eine ziemlich effiziente Formel und ziemlich genau im Vergleich zu anderen Techniken der Nachfrage Prognose. Lektion Zusammenfassung Die Bedarfsprognose ist ein wesentlicher Bestandteil eines von Unternehmen geplanten Plans für zukünftige Zeiträume. Verschiedene Techniken können sowohl qualitativ als auch quantitativ angewendet werden und stellen den Managern unterschiedliche Datenmengen zur Verfügung, da sie die Nachfrage vor allem im Verkaufsvolumen prognostizieren. Die gleitenden durchschnittlichen und exponentiellen Glättungstechniken sind beides Beispiele für die Verwendung von Methoden zur Prognose der Nachfrage. Um diese Lektion freizuschalten, müssen Sie ein Studienmitglied sein. Erstellen Sie Ihr Konto Earning College Credit Haben Sie knowhellip Wir haben über 79 College-Kurse, die Sie vorbereiten, um Kredit durch Prüfung zu verdienen, die von über 2.000 Hochschulen und Universitäten akzeptiert wird. Sie können testen, aus den ersten beiden Jahren College und sparen Tausende von Ihrem Grad. Jeder kann Kredit-by-Prüfung unabhängig von Alter oder Bildung zu verdienen. Übertragen von Krediten an die Schule Ihrer Wahl Nicht sicher, was College Sie besuchen wollen Studie hat Tausende von Artikeln über jeden denkbaren Grad, Studienbereich und Karriere, die Ihnen helfen, die Schule das Richtige für Sie finden können. Research Schools, Degrees amp Karriere Holen Sie sich die unvoreingenommene Informationen, die Sie benötigen, um die richtige Schule zu finden. Durchsuchen von Artikeln nach Kategorie3 Verstehen von Prognoseebenen und - methoden Sie können sowohl Detailprognosen (Einzelposten) als auch Zusammenfassungs - (Produktlinien) Prognosen erstellen, die Produktbedarfsmuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit Hilfe von 12 Prognosemethoden zu berechnen. Die Prognosen umfassen Detailinformationen auf Positionsebene und übergeordnete Informationen über eine Branche oder das Unternehmen als Ganzes. 3.1 Kriterien für die Bewertung der Projektergebnisse Abhängig von der Auswahl der Verarbeitungsoptionen und der Trends und Muster in den Verkaufsdaten sind einige Prognosemethoden für einen bestimmten historischen Datensatz besser als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie können feststellen, dass eine Prognosemethode, die gute Ergebnisse in einem Stadium eines Produktlebenszyklus bereitstellt, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Diese beiden Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem die ausgewählten Prognosemethoden auf die Vergangenheit des Bestellverlaufs angewendet und die Prognosesimulation mit dem aktuellen Verlauf verglichen werden. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die Ist-Bestellvorgänge mit den Prognosen für einen bestimmten Zeitraum und berechnet, wie genau die einzelnen Prognosemethoden den Umsatz prognostizieren. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik veranschaulicht die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Sequenz von Schritten, um die beste Anpassung zu ermitteln: Verwenden Sie jede angegebene Methode, um eine Prognose für die Halteperiode zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe mit den simulierten Prognosen für die Halteperiode. Berechnen Sie die POA oder die MAD, um zu bestimmen, welche Prognosemethode am ehesten mit den bisherigen tatsächlichen Umsätzen übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den Verarbeitungsoptionen, die Sie auswählen. Empfehlen Sie eine Best-Fit-Prognose durch die POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten zu Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management nutzt 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode die beste Prognosesituation bietet. Dieser Abschnitt behandelt: Methode 1: Prozent über dem letzten Jahr. Methode 2: Berechnet Prozent über Letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Gleitender Durchschnitt. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter gleitender Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend - und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Prognosegenerierungsprogramm (R34650) verwenden möchten. Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel können Sie das Gewicht, das auf die jüngsten historischen Daten oder den Zeitraum der historischen Daten, die in den Berechnungen verwendet wird, platziert werden. Die Beispiele in dem Leitfaden zeigen die Berechnungsprozedur für jede der verfügbaren Prognosemethoden an, wenn ein identischer Satz von historischen Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden einen Teil oder alle dieser Datensätze, die historische Daten der letzten zwei Jahre sind. Die Prognose geht ins nächste Jahr. Diese Verkäufe Geschichte Daten ist stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Veralterung nähern könnte. 3.2.1 Methode 1: Prozentsatz über letztem Jahr Diese Methode verwendet die Prozentsatz über letztes Jahr Formel, um jede Prognoseperiode mit der angegebenen prozentualen Erhöhung oder Abnahme zu multiplizieren. Zur Prognose der Nachfrage, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Umsatz Geschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Produkten mit Wachstum oder Rückgang prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozentsatz über dem letzten Jahr Die Formel "Prozent über letztes Jahr" multipliziert die Umsatzdaten des Vorjahres mit einem Faktor, den Sie angeben, und dann Projekte, die sich über das nächste Jahr ergeben. Diese Methode kann in der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren, oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognose Spezifikationen: Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die Verkaufsverlaufsdaten der letzten Jahre um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Übereinstimmung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Februarprognose entspricht 117 mal 1,1 128,7 gerundet auf 129. Die Märzprognose entspricht 115 mal 1,1 126,5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztem Jahr Diese Methode verwendet den berechneten Prozentsatz Letztes Jahr Formel, um die vergangenen Verkäufe der angegebenen Perioden mit Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System ermittelt einen prozentualen Anstieg oder Abfall und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu bestimmen. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden der Kundenauftragshistorie plus einem Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die kurzfristige Nachfrage nach Saisonartikeln mit Wachstum oder Rückgang prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über Letztes Jahr Die Formel des berechneten Prozentsatzes über dem letzten Jahr multipliziert Umsatzdaten des Vorjahres mit einem Faktor, der vom System berechnet wird, und dann projiziert er das Ergebnis für das nächste Jahr. Diese Methode könnte bei der Projektion der Auswirkungen der Ausweitung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr nützlich sein, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist. Prognose Spezifikationen: Bereich der Umsatzgeschichte für die Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte der letzten vier Perioden mit denselben vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist die Vorgeschichte, die bei der Prognoseberechnung verwendet wird: n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr in diesem Jahr Diese Methode wird verwendet Letzten Jahren Umsatz für die nächsten Jahre Prognose. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten geeignet sind, plus einem Jahr der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Die Formel "Letztes Jahr in diesem Jahr" kopiert die Verkaufsdaten des Vorjahres bis zum nächsten Jahr. Diese Methode könnte in der Budgetierung nützlich sein, um Verkäufe auf dem gegenwärtigen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber ein erhebliches saisonales Nachfrage-Muster könnte existieren. Vorhersagevorgaben: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognose Berechnung verwendet: Januar-Prognose entspricht Januar des letzten Jahres mit einem Prognosewert von 128. Februar-Prognose entspricht Februar des letzten Jahres mit einem Prognosewert von 117. März-Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um die nächste Periode zu projizieren. Sie sollten es häufig neu berechnen (monatlich oder mindestens vierteljährlich), um den sich ändernden Bedarf zu reflektieren. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach reifen Produkten ohne Trend prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um eine Projektion kurzfristig zu bestimmen. Die MA-Prognosemethode bleibt hinter Trends zurück. Forecast Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend-oder saisonale Muster. Diese Methode funktioniert besser für Kurzstrecken-Prognosen von reifen Produkten als für Produkte, die in den Wachstums-oder Obsoleszenz Stufen des Lebenszyklus sind. Prognosespezifikationen: n entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Höhe des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatzniveau zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. Märzprognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die Formel zur linearen Approximation, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend zur Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Änderungen in Trends zu erkennen. Diese Methode erfordert die Anzahl der Perioden der besten Übereinstimmung plus die Anzahl der angegebenen Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit konstanten positiven oder negativen Trends, die nicht aufgrund von saisonalen Schwankungen sind prognostiziert. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Verkaufsverlaufsdatenpunkten basiert. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, weil Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosespezifikationen: n entspricht dem Datenpunkt in der Verkaufsgeschichte, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie beispielsweise n 4 an, um die Differenz zwischen Dezember (jüngste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderlicher Umsatzverlauf: n plus 1 plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1-mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (2-mal 2) 141. März-Prognose Dezember des vergangenen Jahres 1 (Trend) entspricht 137 (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Methode der Least Squares Regression (LSR) leitet eine Gleichung ab, die eine Geradenbeziehung zwischen den historischen Verkaufsdaten beschreibt Und der Lauf der Zeit. LSR paßt auf eine Zeile zum ausgewählten Datenbereich, so daß die Summe der Quadrate der Differenzen zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert Umsatzdatenhistorie für die Periode, die durch die Anzahl der bestmöglichen Perioden plus der angegebenen Anzahl von historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten ist. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode, um einen linearen Trend in historischen Verkaufsdaten zu identifizieren. Das Verfahren berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X für Zeit steht. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt Funktion Verschiebungen in der Nachfrage. Die lineare Regression passt auf eine gerade Linie zu den Daten, selbst wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn Verkaufsgeschichte-Daten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten Vorhersage-Bias und systematische Fehler auf. Prognosespezifikationen: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie beispielsweise n 4 an, um die Historie von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde ein grßeres n (wie beispielsweise n 24) gewöhnlich verwendet werden. LSR definiert eine Zeile für so wenige wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderliche Umsatzhistorie: n Perioden plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Märzprognose entspricht 119,5 (7 mal 2,3) 135,6 auf 136 gerundet. 3.2.7 Methode 7: Zweite Grad Approximation Um die Prognose zu projizieren, verwendet diese Methode die Zweite Grad-Approximationsformel, um eine Kurve darzustellen Die auf der Anzahl der Verkaufsphasen beruht. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus die Anzahl der Perioden der Verkaufsauftragsverlauf mal drei. Diese Methode ist nicht geeignet, die Nachfrage nach einem langfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich, aber dieses Verfahren bestimmt Werte für a, b und c in dieser Prognose Formel: Y a b X c X 2 Das Ziel dieses Verfahrens ist es, eine Kurve auf die Verkaufsgeschichte Daten passen. Dieses Verfahren ist nützlich, wenn sich ein Produkt im Übergang zwischen den Lebenszyklusstufen befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, könnte sich die Absatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig nutzbar. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n die Anzahl der Zeitperioden an, die in jedem der drei Punkte akkumuliert werden sollen. In diesem Beispiel ist n 3. Die tatsächlichen Verkaufsdaten für April bis Juni sind in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passform) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), die 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht 140 129 entspricht Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 stellt die gesamten historischen Verkäufe für April, Mai und Juni dar und ist auf X 1 Q2 dargestellt, entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 repräsentiert Januar bis März. Fig. 3-2 Plotten von Q1, Q2, Q3 und Q4 für die Annäherung zweiter Ordnung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 (Q2 a 2b 4c) (3) Q3 a bX cX 2 mit X 3 (Q3 a 3b 9c) Lösen Sie die drei Gleichungen gleichzeitig (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie die Gleichung 1 (1) aus Gleichung 2 (2) und lösen Sie für b: B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließe diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash ein (Q2 ndash Q2) 2 Das zweite Approximationsverfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ) (N3) n0 (n3) n0 (n2) n0 (n3) n0 (n) n (n) 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Näherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 auf 57 pro Periode gerundet. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose ist 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, Letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Mit dieser Methode können Sie die bestmögliche Anzahl von Perioden des Kundenauftragsverlaufs auswählen, die n Monate vor dem Startdatum der Prognose beginnt Wenden Sie einen prozentualen Anstieg oder Abnahme Multiplikationsfaktor, mit dem die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über dem letzten Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, erfordert diese Methode Perioden am besten geeignet plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend vorherzusagen. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Methoden multiplizieren Verkaufsdaten aus einem früheren Zeitraum mit einem von Ihnen angegebenen Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Sie können auch die Flexible Methode verwenden, um einen anderen Zeitraum als denselben Zeitraum des letzten Jahres anzugeben, der als Grundlage für die Berechnungen verwendet werden soll. Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsverlaufsdaten um 10 Prozent zu erhöhen. Basiszeitraum. Zum Beispiel bewirkt n 4, dass die erste Prognose im September des letzten Jahres auf Verkaufsdaten basiert. Mindestens erforderliche Verkaufsgeschichte: Anzahl der Perioden bis zur Basisperiode plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). 3.2.9 Methode 9: Gewichteter gleitender Durchschnitt Die gewichtete gleitende Durchschnittsformel ist vergleichbar mit Methode 4, Gleitende Durchschnittsformel, da sie im Vergleich zum vorausgegangenen Geschäftsverlauf die vorhergehende Verkaufshistorie projiziert. Mit dieser Formel können Sie jedoch Gewichte für jede der vorherigen Perioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden, die am besten zu den Daten passen. Ähnlich wie bei Moving Average, liegt diese Methode hinter den Nachfrage-Trends, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu prognostizieren, die relativ hoch ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ähnelt Methode 4, Gleitender Durchschnitt (MA). Sie können jedoch den historischen Daten bei Verwendung von WMA ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkäufe Geschichte, um zu einer Projektion für die kurzfristige kommen. Jüngere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass WMA ist besser auf Veränderungen in der Ebene des Umsatzes. Allerdings Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trends oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Veränderungen im Absatzniveau zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie 3) schneller auf Verschiebungen des Umsatzniveaus, doch könnte die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden bis includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugeordneten Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, weisen Sie Gewichte von 0,50, 0,25, 0,15 und 0,10 zu, wobei die jüngsten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Die Januarprognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 auf 128 gerundet (119 mal 0,10) (128 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 abgerundet auf 128. März-Vorhersage entspricht 119 mal 0,10 (137 mal 0,15) (128 mal 0,25) 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der bisherigen Verkaufsdaten. Bei dieser Methode wird die Anzahl der Perioden der Kundenauftragshistorie (von 1 bis 12) verwendet, die in der Bearbeitungsoption angegeben ist. Das System verwendet eine mathematische Progression, um Daten im Bereich von dem ersten (am wenigsten Gewicht) bis zum letzten Gewicht (das meiste Gewicht) zu wiegen. Das System projiziert diese Informationen zu jeder Periode in der Prognose. Diese Methode benötigt für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die jeweils am besten passende Monatshälfte plus den Kundenauftragshistorie. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trend-oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Basis für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte den historischen Daten, die linear abnehmen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.11 Methode 11: Exponentialglättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert Umsatzdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus die Anzahl der angegebenen historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten vorhanden ist. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In Linear Smoothing weist das System Gewichte auf, die linear auf die historischen Daten zurückgehen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. Die Prognose für die Exponential-Glättungsprognose lautet: Alpha ist das Gewicht, das auf die tatsächlichen Verkäufe für den vorherigen Zeitraum angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für den vorherigen Zeitraum angewendet wird. Werte für Alpha reichen von 0 bis 1 und fallen üblicherweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuweisen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Grße der Verkäufe zu berechnen. Werte für den Alphabereich von 0 bis 1. n entspricht dem Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Im Allgemeinen reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.12 Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus zwei Jahre der Umsatzdaten und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Betafaktor eingeben oder das System berechnen lassen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größenordnung des Umsatzes (alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode ähnelt Methode 11, Exponentialglättung, indem ein geglätteter Mittelwert berechnet wird. Das Verfahren 12 enthält jedoch auch einen Term in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst wird. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Alpha entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Werte für Alpha reichen von 0 bis 1. Beta entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und beta sind voneinander unabhängig. Sie müssen nicht auf 1,0 Summe. Mindestens erforderlicher Umsatzverlauf: Ein Jahr plus Anzahl der Zeiträume, die zur Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). Wenn zwei oder mehr Jahre historischer Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei Exponential-Glättungsgleichungen und einen einfachen Mittelwert, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher mittlerer saisonaler Index Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T die aktuelle Zeitspanne ist. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. In dieser Tabelle wird der Verlauf der Prognoseberechnung aufgelistet: Dieser Abschnitt bietet einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um bis zu 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode kann eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt verwenden. Das System wertet automatisch die Leistung für jede von Ihnen ausgewählte Prognosemethode und für jedes von Ihnen prognostizierte Produkt aus. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Diese beiden Leistungsbewertungsverfahren erfordern für einen von Ihnen festgelegten Zeitraum tatsächliche Umsatzverlaufsdaten. Der Zeitraum der jüngsten Geschichte für die Auswertung verwendet wird als eine Übergangszeit oder Periode der besten Passform. Um die Performance einer Prognosemethode zu messen, verwendet das System die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Stellt einen Vergleich zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum her. Wenn Sie mehrere Prognosemethoden auswählen, tritt dieser Prozess für jede Methode auf. Mehrere Prognosen werden für die Halteperiode berechnet und im Vergleich zu der bekannten Verkaufsgeschichte für den gleichen Zeitraum. Für die Verwendung in den Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.


No comments:

Post a Comment